Robbins Air-Channel Star system combines anchored laminated sleepers to provide a system with dimensional stability and superior performance. The Air-Channel Star sleepers are laminated and engineered to be less susceptible to physical changes due to moisture compared to solid softwood sleepers. Air-Channel Star is an excellent choice for your gymnasium project.

- Wide-body, low-profile, engineered sleeper anchored uniformly to concrete substrate for enhanced stability.
- 7/8” plywood sleeper enhances performance, flexibility and uniformity and provides dramatic improvement over softwood subfloor components.
- Robbins’ patented “Posi-Anchor”™ built-in depth stop prevents shockpad over-compression, providing uniformity and stability.
- 7/16” (11mm) resilient EPDM Bio-Pad™ for shock absorption and vibration control.
- DIN-certified, meets or exceeds all six DIN 18032-2 criteria for ball bounce, shock absorption, deflection, area of deflection, rolling load and surface friction.
Product Specifications

- **System Type**: Anchored Resilient Sleeper
- **Slab Depression**: 2" (51mm) with 25/32" (20mm) maple
 2 1/4" (57mm) with 33/32" (26mm) maple
- **Surface- MFMA**: Northern Hard Maple
- **Anchorage**: Concrete Anchor & Sleeve
- **Vapor Barrier**: 6 MIL Polyethylene
- **Subfloor Construction**: 7/8" thick wide body laminated sleeper
- **Resilience Layer**: 7/16" Resilient Pad
- **LEED Contributions**: MR credit 4, 5, & 7
 IEQ 4.1, 4.2, 4.3, 4.4
 FSC® Lumber Available
 *Credits are based on products selected and location of facility
- **Optional Construction**: Contact a Robbins Representative for Alternative Systems
- **Warranty**: 1 year Industry Standard with optional Extended Warranty Program (Egis Floorlife)

Air-Channel Family Reference Facilities

- Oklahoma University
- University of Mississippi
- Robert F. Kennedy High School
- Trump Tower- Panama
- University of Michigan

robbinsfloor.com | 1.800.543.1913

Robbins, Inc. | 4777 Eastern Avenue | Cincinnati, OH 45226

All Rights Reserved. © 2012 Robbins, Inc. ACS201207